
Discrete Adjoint-Based Design for

Unsteady Turbulent Flows On

Dynamic Overset Unstructured Grids

Eric J. Nielsen∗

Boris Diskin†

A discrete adjoint-based design methodology for unsteady turbulent flows on three-
dimensional dynamic overset unstructured grids is formulated, implemented, and verified.
The methodology supports both compressible and incompressible flows and is amenable to
massively parallel computing environments. The approach provides a general framework
for performing highly efficient and discretely consistent sensitivity analysis for problems
involving arbitrary combinations of overset unstructured grids which may be static, un-
dergoing rigid or deforming motions, or any combination thereof. General parent-child
motions are also accommodated, and the accuracy of the implementation is established
using an independent verification based on a complex-variable approach. The method-
ology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a
biologically-inspired flapping wing, and a complex helicopter configuration subject to trim-
ming constraints. The objective function for each problem is successfully reduced and all
specified constraints are satisfied.

Nomenclature

A interpolation matrix
A, B amplitudes of rotation in degrees
a, b, c, d temporal coefficients
C mq × 1 vector of zeros and ones, indicator of time derivatives
Cs ms × 1 vector of zeros and ones, indicator of time derivatives at solve points
C aerodynamic coefficient
CL lift coefficient
CMx , CMy lateral and longitudinal moment coefficients
CQ torque coefficient
CT thrust coefficient
c wing chord
D vector of design variables
E total energy per unit volume
F flux vector
Finv, Fvisc inviscid and viscous flux vectors
f ,s general functions
fobj objective function
g1, g2 explicit constraint functions
G grid operator
I projector operator
i

√
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J number of cost function components
K mx ×mx linear elasticity coefficient matrix
L Lagrangian function
md size of vector D
mf size of solution vector at fringe points
mh size of solution vector at hole points
mq size of solution vector Q
ms size of solution vector at solve points
mx size of vector X
N number of time levels
n time level
n̂ outward-pointing normal vector
P mh ×mq pseudo-Laplacian matrix
p pressure, also cost function exponent
Q mq × 1 vector of volume-averaged conserved variables
q mq × 1 vector of conserved variables
R ms × 1 vector of spatial undivided residuals
R mx ×mx block-diagonal rotation matrix
R 3× 3 rotation matrix
RGCL residual of the static geometric conservation law (GCL)
RGCL ms × 1 vector of RGCL

S Control volume surface area
T 4× 4 transform matrix
t time
u, v, w Cartesian components of velocity
V mq ×mq diagonal matrix of cell volumes
V control volume
W 3× 1 face velocity vector
X mx × 1 vector of grid coordinates
x 3× 1 position vector
x independent variable
x, y, z Cartesian coordinate directions
α interpolation coefficient
β scaling parameter for incompressible continuity equation
ε perturbation
θ angle of rotation, also blade pitch
θc collective input
θ1c lateral cyclic input
θ1s longitudinal cyclic input
Λ mq × 1 flow-field adjoint variable
Λg mx × 1 grid adjoint variable
ρ density
τ mx × 1 translation vector
τ 3× 1 translation vector
ψ blade azimuth
ω cost function component weight
ω1, ω2 frequencies of rotation in rad/s

Subscripts/Superscripts

c child motion
f fringe point
h hole point
i, j, k, m, n indices
in quantity at initial conditions
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nb quantity at simply-connected neighbor
p parent motion
s solve point
x, y, z axis of rotation
∞ quantity at free-stream conditions
∗ target quantity
overbar volume-averaged or time-averaged quantity, also complement of a vector

Symbols

Diag diagonal matrix operator
◦ Hadamard vector multiplication operator
� extension of ◦ to a vector-matrix product

I. Introduction

As access to powerful high-performance computing resources has become more widespread in recent years,
the use of high-fidelity physics-based simulation tools for analysis of complex aerodynamic flows has become
increasingly routine. The availability and affordability of high-fidelity analysis tools has in turn stimulated an
enormous body of research aimed at applying such tools to formal design optimization of complex aerospace
configurations. A survey of the relevant literature shows that optimization methods based on the Euler
and Reynolds-averaged Navier-Stokes equations have indeed gained a strong foothold in the design cycle
for problems governed by steady flows.1,2 Conversely, formal optimization methods for problems involving
unsteady flow are also under development,3–9 but in general are not as mature at the present time. This
lag can be attributed at least in part to the increased computational cost typically associated with unsteady
simulations.

For gradient-based optimization of problems involving many design variables, the ability to generate
sensitivity information at a relatively low cost is critical. Unlike forward differentiation techniques such as
finite differencing,10 direct differentiation,11 and complex-variable methods,12 the adjoint approach performs
sensitivity analysis at a cost comparable to that of a flow solution and independent of the number of design
variables.13 Efficient evaluation of sensitivities of an output with respect to all input parameters has led
to numerous applications of adjoint-based methods in various areas of research and engineering. Some
recent adjoint-based developments include a mathematically-rigorous approach to error estimation and mesh
adaptation,14 simultaneous design of shape and active flow control parameters for a high-lift configuration,3

efficient methods for uncertainty quantification,15 sonic boom optimization,16 laminar flow control,17 and
many others.

Adjoint methods can be further classified into continuous and discrete variants, depending on the order
in which the differentiation and discretization of the governing equations is performed. A discrete adjoint
approach to sensitivity analysis is taken here. The methodology has been widely used for a broad class
of optimization problems involving both steady and unsteady flows.3,5, 18–24 One of the advantages of
the discrete adjoint approach is that the sensitivities computed by this method can be verified to machine
precision by comparison with complex variable sensitivities.12 The approach requires a complete linearization
of the discrete governing equations with respect to both the flow-field variables and mesh coordinates. Strictly
speaking, the adjoint approach for unsteady flows requires the evaluation of these linearizations at each
physical time step. Therefore, the predominant challenge in extending a steady-state implementation to
the unsteady regime is the development of an efficient infrastructure to store and access the entire forward
solution as needed.

The analysis of vehicles experiencing large relative motion of vehicle components is often accomplished
using overset discretizations. Design optimization for unsteady flows using such discretizations serves as the
primary motivation for the current work. An implementation of the discrete adjoint approach for optimization
of general three-dimensional unsteady turbulent flows on single-block unstructured grids is described in Refs.
3 and 5. Others have previously demonstrated adjoint-based capabilities for overset mesh discretizations;
however, such works have been restricted to steady flows.25–29 The methodology described here is intended
for aerodynamic optimization of configurations characterized by large dynamic grid motions.
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The primary contributions of this paper are the development, implementation, verification, and demon-
stration of an adjoint-based methodology for optimization and design of the most general unsteady aero-
dynamic flows. In the case of rotary wing flows, an optimization reported here involves a full helicopter
configuration subject to trimming constraints and completes the series of studies addressing models of pro-
gressively higher fidelity. The previously considered models include actuator disk approaches,30 noninertial
formulations,20 and dynamic grid formulations involving isolated rotors.5 The generality of dynamic over-
set unstructured grid methods makes this methodology applicable to the most general flows occurring in a
variety of practical computational fluid dynamics applications, e.g., store/stage separation, turbomachinery,
wind turbine systems, rotary wing systems, biologically-inspired devices, and many others. Several diverse
large-scale design applications are demonstrated in this paper.

The material is presented in the following order. The governing equations and some fundamental concepts
of overset mesh systems are presented first. The approach taken to solve the flow equations is reviewed,
followed by a derivation of the accompanying discrete adjoint equations. Details of the solution strategy
are covered and the accuracy of the implementation for a very general dynamic motion case is verified
using an independent approach based on complex variables. Finally, successful demonstrations of the design
methodology are shown for a wind turbine geometry, a biologically-inspired flapping wing, and a realistic
helicopter configuration. The appendix contains derivations for high-order temporal schemes.

II. Governing Equations

In this paper, the unsteady turbulent flow equations are used in both compressible and incompressible
formulations. The primary distinction between these formulations is that the incompressible continuity
equation does not have a time derivative term; all other (compressible and incompressible) equations do
have time derivatives. For a simultaneous description of the unsteady compressible and incompressible
Navier-Stokes equations, it is convenient to introduce an indicator of time derivative, C, and a Hadamard
vector multiplication operator.31 The vector C is a logical vector composed of zeros and ones and has the
same dimension as the residual vector. Ones correspond to equations with time derivatives, while zeros
correspond to equations with no time derivatives. The logical complement to C, C̄, is a vector of the same
dimension in which zeros are replaced by ones and vice-versa. The Hadamard operator is denoted as ◦ and
acts on two vectors of the same dimension, which are multiplied in an element-by-element fashion. The result
of the Hadamard multiplication is a vector of the same dimension. The simultaneous description of the flow
equations involves the Hadamard multiplication of the vector C with the vector of time derivatives. The
resulting equations can be written in the following form for both moving and stationary control volumes:

C ◦ ∂

∂t

∫
V

qdV +
∮

∂V

(Finv − Fvisc) · n̂dS = 0, (1)

where V is the control volume bounded by the surface ∂V and n̂ is an outward-pointing unit normal. The
vector q represents the conserved variables for mass, momentum, and energy, and the vectors Finv and Fvisc

denote the inviscid and viscous fluxes, respectively.
For a moving control volume, the viscous flux is unchanged while the inviscid flux vector accounts for

the difference in the fluxes due to the movement of control volume faces. Given an inviscid flux vector F on
a static grid, the corresponding flux Finv on a moving grid can be defined as Finv = F− (C ◦q+ C̄)(W · n̂),
where W is a local face velocity. In other words, Finv = F − q(W · n̂) for a conservation equation with a
time derivative and Finv = F− (W · n̂) for an equation without a time derivative.

By defining a volume-averaged quantity q̄ within each control volume,

q̄ =
1
V

∫
V

qdV, (2)

the conservation equations given by Eq. 1 take the form

C ◦ ∂(q̄V )
∂t

+
∮

∂V

(Finv − Fvisc) · n̂dS = 0. (3)

Here the conserved variables and inviscid flux vectors for compressible flows are defined as q̄ = [ρ, ρu, ρv, ρw,E]T
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and

Finv =


ρ(u−Wx)

ρu(u−Wx) + p

ρv(u−Wx)
ρw(u−Wx)

(E + p)(u−Wx) +Wxp

 î +


ρ(v −Wy)
ρu(v −Wy)

ρv(v −Wy) + p

ρw(v −Wy)
(E + p)(v −Wy) +Wyp

 ĵ +


ρ(w −Wz)
ρu(w −Wz)
ρv(w −Wz)

ρw(w −Wz) + p

(E + p)(w −Wz) +Wzp

 k̂, (4)

and the perfect gas equation of state is assumed. The corresponding vectors for incompressible flows are
q̄ = [p, u, v, w]T and

Finv =


β(u−Wx)

u(u−Wx) + p

v(u−Wx)
w(u−Wx)

 î +


β(v −Wy)
u(v −Wy)

v(v −Wy) + p

w(v −Wy)

 ĵ +


β(w −Wz)
u(w −Wz)
v(w −Wz)

w(w −Wz) + p

 k̂, (5)

where β is a scaling parameter analogous to the artificial compressibility parameter.32 Recall, however, that
the incompressible continuity equation does not have a time derivative. The viscous flux vector Fvisc is not
explicitly shown here. For turbulent flows, the equations are closed with an appropriate turbulence model
for the eddy viscosity.

The high-order (up to third-order) backward difference (BDF) discretizations for the time derivative of
a function s are defined as

∂s

∂t
=

1
∆t
(
asn + bsn−1 + csn−2 + dsn−3

)
, (6)

where n is a time level, and the coefficients are given in Table 1. The number after the BDF abbreviation
indicates the order of the scheme. The coefficients listed for the BDF2opt scheme are a linear combination of
the BDF2 and BDF3 coefficients taken from Refs. 33 and 34. The resulting scheme is second-order accurate
but has a leading truncation error term less than that of the BDF2 scheme.

Using a BDF1 scheme, the discrete form of the flow equations at time level n is given as

C ◦ q̄nV n − q̄n−1V n−1

∆t
+ Rn = 0, (7)

where V n and q̄n are a control volume and the corresponding solution vector at time level n and Rn is
a vector of spatial undivided residuals approximating the flux term in Eq. 3. The first-order temporal
scheme is chosen for the sake of simplicity; higher-order BDF schemes are used in practical computations
and the demonstrations below. The Arbitrary Lagrangian-Eulerian (ALE)35 node-centered finite-volume
discretization of Eq. 3 used in the current work and described in Ref. 36 employs the following discrete
formulation:

C ◦ q̄n − q̄n−1

∆t
V n + Rn +Rn

GCL(C ◦ q̄n−1 + βC̄) = 0. (8)

Here,

Rn
GCL =

∮
∂V

Wn · n̂dS, (9)

where Wn is a vector of local face velocities at time level n. Note that substituting a spatially and temporally
constant state vector, q̄, into Eq. 7 results in a geometric conservation law (GCL)37

V n − V n−1

∆t
−Rn

GCL = 0 (10)

for an equation with a time derivative and

−βRn
GCL = 0 (11)

for the incompressible continuity equation. Eq. 8 is obtained by subtracting the GCL residual, multiplied
by q̄n−1 for an equation with a time derivative, from Eq. 7.
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III. Overset Grids

An overset grid formulation is characterized by the presence of two or more overlapping component grids.
Each grid point and its corresponding control volume may be classified as one of four types based on the
nature of the equation to be solved for that control volume. “Solve” points are points at which the discretized
flow equations given by Eq. 8 are defined. “Fringe” points are points in overlap regions where interpolated
data is specified in lieu of boundary conditions. The equations defined at fringe points are interpolation
equations such that the solution at a fringe point, q̄f , is defined as a linear combination of solution values
at solve points, q̄s:

q̄f −
∑

k

αkq̄k
s = 0,

∑
k

αk = 1. (12)

Typically, the fringe point and the solve points appearing in Eq. 12 belong to different overlapping component
grids. “Hole” points refer to points outside the computational domain, e.g., within the boundaries of a wing.
In the current approach, the solution at hole points, q̄h, is set to the average of the solution values at its
simply-connected neighbors, q̄j

nb. This averaging procedure is equivalent to a discrete pseudo-Laplacian,
which is an elliptic operator: ∑

j

(q̄h − q̄j
nb) = 0, (13)

where the hole point neighbors are identified by j. Finally, “orphan” points refer to grid points located
within the computational domain for which neither the flow equations are imposed, nor can suitable points
be found from which to interpolate solution information. In the current effort, the same pseudo-Laplacian
procedure is defined for hole and orphan points, so that orphan points are not explicitly considered as a
separate entity in the formulation to follow.

For dynamic grid motions, the character of each grid point may change as a function of time. It is
preferable to have grid topologies such that the residuals of the governing equations at solve and fringe
points do not depend on solution values at hole points. At a minimum, hole-point solutions should not
contribute to residuals at solve and fringe points within the same time level. In practice, it can be difficult
to prevent solutions at hole points from contributing to residuals at solve points through the time derivative;
however, maximizing the extent of fringe regions and reducing the time step can help to alleviate this
difficulty.

The domain-connectivity information required by the overset implementation is established using the
software libraries described in Ref. 38. This methodology has been used extensively with the flow solver for
performing analysis of multibody problems undergoing large relative motions.30,36,39–45 Given the topology
of each component grid, each grid point in the composite grid is determined to be a solve, fringe, hole or
orphan point. This procedure is performed dynamically during the solution process as required by the grid
motion. The mesh elements containing fringe points are established and the weighting coefficients required
to interpolate data at such points are evaluated. For cases in which the grid motion is periodic, the user may
choose to store the domain-connectivity information during the first cycle of motion for use in subsequent
cycles. Once the interpolation coefficients are known, the complementary library described in Ref. 46 is used
to determine the current solution at fringe points. The solution at hole and orphan points is determined based
on user-supplied subroutines specifying the desired treatment at such locations. In the current approach,
the pseudo-Laplacian given by Eq. 13 is used.

IV. Flow Solver

References 23, 36, and 47–49 describe the flow solver used in the current work. The code can be used
to perform aerodynamic simulations across the speed range and an extensive list of options and solution
algorithms is available for spatial and temporal discretizations on general static or dynamic mixed-element
unstructured meshes which may or may not contain overset grid topologies.

In the current study, the spatial discretization uses a finite-volume approach in which the dependent
variables are stored at the vertices of tetrahedral meshes. Inviscid fluxes at cell interfaces are computed
using the upwind scheme of Roe,50 and viscous fluxes are formed using an approach equivalent to a finite-
element Galerkin procedure. The incompressible implementation is based on Refs. 49 and 51. For dynamic
mesh cases, the mesh velocity terms are evaluated using backward differences consistent with the discrete
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time derivative; this makes the spatial and GCL residuals dependent on grids at previous time levels. The
eddy viscosity is modeled using the one-equation approach of Spalart and Allmaras.52 The turbulence
model is integrated all the way to the wall without the use of wall functions and is weakly coupled, i.e.,
solved separately from the mean flow equations at each time step. Scalability to thousands of processors
is achieved through parallel domain decomposition, pre-processing, and solver mechanics. Post-processing
operations such as the generation of isosurface and computational schlieren animations are also performed
in parallel, avoiding the need for a single image of the mesh or solution at any time and ultimately yielding a
highly efficient end-to-end parallel simulation paradigm. To date, this approach has been used to carry out
computations on meshes containing as many as two billion points and twelve billion tetrahedral elements.53

To collectively describe equations and solutions defined at solve, fringe, and hole points, it is convenient to
introduce corresponding projectors In

s , In
f , and In

h at time level n. These operators are rectangular matrices
of respective dimensions ms × mq, mf × mq, and mh × mq, and whose rows contain a single unity entry
complemented by zeros. The values ms, mf , and mh are the solution dimensions at all solve, fringe, and hole
points, respectively, and mq = ms +mf +mh is the solution dimension at all grid points. The projectors are
used to extract solutions at grid points of a specific type: Qn

s = In
s Qn, Qn

f = In
f Qn, and Qn

h = In
hQn, where

Qn is the vector of solution values at all grid points and Qn
s , Qn

f , and Qn
h are the vectors of solution values

at solve, fringe, and hole points, respectively. Finally, note that the projector operators can vary in time.
The discrete form of the flow equations with a BDF1 scheme for the time derivative at time level n can

be written as

Cn
s ◦Vn

s ◦
Qn

s − In
s Qn−1

∆t
+ Rn +

[(
In
s Qn−1

)
◦Cn

s + βC̄n
s

]
◦Rn

GCL = 0. (14)

In Eq. 14 and all discussions to follow, Rn and Rn
GCL are ms × 1 vectors that include residuals at solve

points, Vn is an mq × 1 vector of control volumes for all equations at time level n, Vn
s = In

s Vn is a subset
of Vn corresponding to solve points, Cn

s is an ms× 1 vector-indicator of a time derivative restricted to solve
points at time level n, and C̄n

s is the complement of Cn
s . Note that a solve point at time level n may or may

not be a solve point at time level n− 1.
The equations at fringe points are defined as

AnQn = 0, (15)

where An is the mf ×mq matrix defining the interpolation of solution data from overset grid solutions at
time level n as introduced in Eq. 12. The equations at hole points are defined as

PnQn = 0, (16)

where Pn is the mh ×mq matrix of the pseudo-Laplacian given by Eq. 13.
The Jacobian of the implicit Eqs. 14, 15, and 16 at time level n is a 3× 3 block matrix of the form

1
∆tDiag(Cn

s ◦Vn
s ) + ∂Rn

∂Qn
s

∂Rn

∂Qn
f

∂Rn

∂Qn
h

An
s An

f An
h

Pn
s Pn

f Pn
h

 , (17)

where Diag(Cn
s ◦Vn

s ) is a diagonal ms×ms matrix with the vector Cn
s ◦Vn

s on the main diagonal; An
f is an

mf ×mf diagonal matrix describing interpolation at fringe points; An
s and An

h are matrices with respective
dimensions mf ×ms and mf ×mh describing interpolation from solve and hole points; and Pn

s , Pn
f , and Pn

h

are matrices with respective dimensions mh×ms, mh×mf , and mh×mh describing contributions of solve,
fringe, and hole points to the pseudo-Laplacian defined at hole points. Note that if the solution at hole points
does not contribute to residuals at solve and fringe points within the same time level, then ∂Rn/∂Qn

h = 0,
An

h = 0, and the equations at hole points decouple from the equations at solve and fringe points.

V. Grid Equations

The general grid equations can be defined in the form

Gn(X,D) = 0, (18)
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where the mx×1 vector X represents the coordinates of the composite overset mesh (meshes at several time
levels may be involved), D is the vector of design variables, and n denotes the time level and indicates that
the grid operator may vary in time. Moreover, different grid operators Gn may be specified for different
component grids. The specific formulations for different grid motions are introduced next.

V.A. Grids Undergoing Rigid Motion

For problems in which rigid mesh motion is required, the motion is generated by a 4×4 transform matrix, T ,
as outlined in Ref. 36. This transform matrix enables general translations and rotations of a grid according
to the relation

x = Tx0, (19)

which moves a point from an initial position x0 = (x0, y0, z0)T to its new position x = (x, y, z)T :
x

y

z

1

 =


R11 R12 R13 τx

R21 R22 R23 τy

R31 R32 R33 τz

0 0 0 1



x0

y0

z0

1

 . (20)

In an expanded form, x = Rx0 + τ . Here, the 3 × 3 matrix R defines a general rotation and the vector τ
specifies a translation. The matrix T is generally time dependent. One useful feature of this approach is that
multiple transformations telescope via matrix multiplication. This formulation is particularly attractive for
composite parent-child body motion, in which the motion of one body is often specified relative to another.
The reader is referred to the discussion in Ref. 36 for more details. For a rigid-motion formulation, the grid
operator at time level n is defined as

Gn(Xn,X0,D) ≡ RnX0 + τn −Xn, (21)

or in abbreviated notation,
Gn(Xn,X0,D) ≡ TnX0 −Xn. (22)

Here, X0 and Xn are the grid vectors at the initial and n-th time levels, respectively; Rn is an mx ×mx

block-diagonal matrix with 3 × 3 blocks representing rotation and mx being the size of vector Xn; and τn

is an mx-size translation vector. The matrix Rn and vector τn may explicitly depend on D.

V.B. Deforming Grids

The simplest example of a deforming grid simulation is a static grid undergoing deformations as a result
of a shape optimization process. In this case, the grid is not time-dependent and is modeled as an elastic
medium that obeys the elasticity relations of solid mechanics. An auxiliary system of linear partial differential
equations (PDEs) is solved to determine the mesh coordinates after each shape update. Discretization of
these PDEs yields a system of equations

K
(
X− X̄

)
= Xbound − X̄bound, (23)

where K represents the elasticity coefficient matrix, X is the vector of grid coordinates being solved for,
X̄ is the vector of coordinates of a reference grid, and Xbound and X̄bound are the vectors of corresponding
boundary coordinates, complemented by zeros for all interior coordinates. The coefficients of the matrix K
depend on X̄. The material properties of the system given by Eq. 23 are chosen based on either the local
cell geometry or proximity to the surface and are invariant with respect to coordinate transformations. The
system is solved using a preconditioned generalized minimal residual algorithm. For further details on the
approach, see Refs. 19,36, and 54.

For static grid deformation, the only grid operator used at all times is

G(X,D) ≡ −K
(
X− X̄

)
+ Xbound − X̄bound, (24)

where Xbound may explicitly depend on D, X̄ is an independent grid obtained either from a grid generator or
from the previous optimization iteration, and X̄bound is the vector of corresponding boundary coordinates.
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When time-dependent deforming grids are required, the rigid motion as described in the previous section
is not valid. For small relative grid deformations, the linear elasticity equations given by Eq. 23 are solved
at each time level with the matrix K = K0 computed at the initial time level and fixed throughout the time
evolution; Xn

bound includes the description of the current body positions. The grid operator at time level n
is defined as

Gn(Xn,D) ≡ −K0
(
Xn − X̄

)
+ Xn

bound − X̄bound. (25)

V.C. Parent-Child Motions

Large relative motions are described through parent-child relations, in which the collective motion of a child
body is described as the product TpTc, where Tp is the collective parent transform matrix (which itself
can be a chain of parent-child products) and Tc is the transform matrix describing the motion of the child
with respect to the parent. In the current implementation, there is a one-to-one correspondence between
moving bodies and component grids. Additional static grids may be associated with the non-inertial frame.
Thus, a transform matrix describes not only the body motion, but may also describe the transformation of
the corresponding grid. In general, a parent-child chain of motions can include an arbitrary combination of
rigidly moving and deforming overset grids. If a component grid, Xn, is designated as rigid, then all nodes
of this grid undergo the same motion described as

Gn(Xn,X0,D) ≡ −Xn + TpTcX0. (26)

If a component grid is designated as deforming, then the initial grid, X0, is either given,

G0(X0,D) ≡ −X0 + X̄, (27)

or computed from the elasticity equations, Eq. 25. The corresponding body surface undergoes the TpTc

motion, the external boundary and the initial (reference) grid undergo the Tp motion, and the grid at time
level n, Xn, satisfies the elasticity relations

Gn(Xn,X0,D) ≡ −Kn
(
Xn −TpX0

)
+ Xn

bound −TpX0
bound. (28)

Here, the matrix Kn is computed using the moved initial grid TpX0. Note that because of invariance of the
material properties of the elasticity system, the following identity holds:

KnTp = TpK0. (29)

In the current implementation, if any component grid is designated as deforming, then the entire composite
grid is designated as deforming, and all component grids are treated as deforming, including those component
grids that are in fact rigid. In this scenario, the external boundaries and the reference grid of a rigid
component grid are moved with the collective motion of the corresponding body, TpTc, the boundary
variations in Eq. 28 become zero, and the obtained grid, Xn, is equivalent to the rigidly moving one, Eq. 26.
If all component grids are labeled as either rigid or static, then the composite grid is designated rigid, and
all grid points are moved according to Eq. 26.

VI. Cost Functions and Design Variables

The steady-state adjoint implementation described in Refs. 18–24 permits multiple objective functions
and explicit constraints of the following form, each containing a summation of individual components:

fi =
Ji∑

j=1

ωj(Cj − C∗j )pj . (30)

Here, ωj represents a user-defined weighting factor, Cj is an aerodynamic coefficient such as the total
drag or the pressure or viscous contributions to such quantities, the superscript ∗ indicates a user-defined
target value of Cj , and pj is a user-defined exponent. Targets are chosen to encourage beneficial changes
in the design parameters and are typically far enough from the baseline values to avoid limiting potential
improvements. The exponent values are chosen so that fi is a convex functional, which is important for
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convergence of gradient-based optimization. The user may specify computational boundaries to which each
component function applies. The index i indicates a possibility of introducing several different cost functions
or constraints, which may be useful if the user desires separate sensitivities, for example, for lift, drag,
pitching moment, etc. The implementation also supports multipoint optimization.20

For the unsteady formulation, similar general cost functions fn
i are defined at each time level n. The

accumulated cost function fi can be defined as a discrete sum over a certain time interval [t1i , t
2
i ]:

fi =
N2

i∑
n=N1

i

fn
i , (31)

where time levels N1
i and N2

i correspond to t1i and t2i , respectively. The corresponding time integral is
approximated as fi∆t. The current study also introduces an additional cost function of the following form,
which is based on the time-averaged value of an output:

fi =

 1
(N2

i −N1
i + 1)

N2
i∑

n=N1
i

Cn
i

− C∗i

pi

. (32)

The user supplies time intervals over which the cost functions are to be used.
There are three classes of design variables available in the current implementation. The first is composed

of global parameters unrelated to the computational grid. These variables include parameters such as
the free-stream Mach number and angle of attack. Such variables are particularly useful in verifying the
implementation of the flow-field adjoint equations.

The second class of design variables provides general shape control of the configuration. The implemen-
tation allows the user to employ a geometric parameterization scheme of choice, provided the associated
surface grid linearizations are available. For the examples in the current study, the grid parameterization
approach described in Ref. 55 is used. This approach can be used to define general shape parameterizations
of existing grids using a set of aircraft-centric design variables such as camber, thickness, shear, twist, and
planform parameters at various locations on the geometry. The user also has the freedom to associate design
variables to define more general parameters. In the event that multiple bodies of the same shape are to be
designed — such as a set of rotor blades — the implementation allows for a single set of design variables to
be used to simultaneously define such bodies. In this fashion, the shape of each body is constrained to be
identical throughout the course of the design.

Finally, the third class of design variables governs any kinematics that may be present. The user may
invoke simple translation and rotation functions native to the solver; in this case, basic parameters such
as frequencies, amplitudes, directional vectors, and centers of rotation are available as design variables.
Alternatively, more complicated kinematics and associated design variables may be supplied through a
user-defined subroutine satisfying a standard interface. This interface is wrapped with a complex-variable
perturbation scheme12 to numerically evaluate the Jacobian of the specified kinematic motion which is
required by the adjoint formulation to follow.

VII. Adjoint Equations

The goal of the design optimization problem for unsteady flows is to choose the design parameters D
to minimize an objective function, fobj = f∆t, where f is posed by Eqs. 31 or 32 and the subscript i is
omitted. For the sake of clarity, the formulation to be presented here is based on a BDF1 scheme for the
time derivative as introduced in Eq. 14. The derivation for higher order BDF schemes is similar and is
presented in the appendix. Following the methodology described in Refs. 5 and 56, a Lagrangian function
is defined as

L (D,Q,X,Λ,Λg) = f∆t+
([

Λ0
g

]T
G0 +

[
Λ0
]T

Rin
)

∆t

+
N∑

n=1

{[
Λn

g

]T
Gn +

[
Λn

f

]T
[AnQn] + [Λn

h]T [PnQn]

+ [Λn
s ]T

[
Cn

s ◦Vn
s ◦

Qn
s−In

s Qn−1

∆t + Rn +
((

In
s Qn−1

)
◦Cn

s + βC̄n
s

)
◦Rn

GCL

]}
∆t

(33)
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Here, Λn
s , Λn

f , Λn
h and Λn

g are ms×1, mf ×1, mh×1, and mx×1 vectors of Lagrange multipliers associated

with the solve, fringe, hole, and grid equations, respectively; [Λn]T =
[
[Λn

s ]T ,
[
Λn

f

]T
, [Λn

h]T
]
; Λn

s = In
s Λn,

Λn
f = In

f Λn, and Λn
h = In

hΛn; and Rin = 0 represents the initial conditions. A typical form of the initial
conditions is Rin ≡ V0 ◦

(
Q∞ −Q0

)
, where Q∞ is the free-stream solution; other forms, such as a steady-

state initial solution, are also possible.
The Lagrangian given by Eq. 33 is differentiated with respect to D, assuming that Vn depends on Xn;

Gn depends on Xn, X0, and D; Rn depends on Qn, Xn, Xn−1, and D; Rn
GCL depends on Xn, Xn−1, and

D; An depends on Xn; G0 depends on X0 and D; Rin depends on Q0, X0, and D; and Pn, Cn
s , C̄n

s , In
s ,

In
f , and In

h are independent of grid coordinates, solutions, and design parameters.
Regrouping terms to collect the coefficients of ∂Qn/∂D and equating those coefficients to zero yields the

adjoint equations:

S : 1
∆tC

n
s ◦Vn

s ◦Λn
s +

[
∂Rn

∂Qn
s

]T
Λn

s + [An
s ]T Λn

f + [Pn
s ]T Λn

h =

−
[

∂f
∂Qn

s

]T
− In

s

[
In+1
s

]T [
Cn+1

s ◦
(
− 1

∆tV
n+1
s + Rn+1

GCL

)
◦Λn+1

s

]
,

F :
[

∂Rn

∂Qn
f

]T
Λn

s +
[
An

f

]T
Λn

f +
[
Pn

f

]T
Λn

h =

−
[

∂f
∂Qn

f

]T
− In

f

[
In+1
s

]T [
Cn+1

s ◦
(
− 1

∆tV
n+1
s + Rn+1

GCL

)
◦Λn+1

s

]
,

H :
[

∂Rn

∂Qn
h

]T
Λn

s + [An
h]T Λn

f + [Pn
h]T Λn

h =

−
[

∂f
∂Qn

h

]T
− In

h

[
In+1
s

]T [
Cn+1

s ◦
(
− 1

∆tV
n+1
s + Rn+1

GCL

)
◦Λn+1

s

]
, for 1 ≤ n ≤ N ;

[
∂Rin

∂Q0

]T
Λ0 = −

[
∂f

∂Q0

]T
−
[
I1
s

]T [
C1

s ◦
(
− 1

∆tV
1
s + R1

GCL

)
◦Λ1

s

]
, for n = 0,

(34)

where ΛN+1
s = 0. The preceding letters indicate the type of points at which the equations are defined; S,

F , and H correspond to solve, fringe, and hole points, respectively. Collecting the coefficients of ∂Xn/∂D
and equating those coefficients to zero in a similar fashion yields the grid adjoint equations:

−
[

∂Gn

∂Xn

]T
Λn

g =
[(

Cn
s ◦

Qn
s−In

s Qn−1

∆t

)
� ∂Vn

s

∂Xn

]T
Λn

s +
[

∂(AnQn)
∂Xn

]T
Λn

f

+
1∑

k=0

[
∂Rn+k

∂Xn +
((

In+k
s Qn+k−1

)
◦Cn+k

s + βC̄n+k
s

)
� ∂Rn+k

GCL

∂Xn

]T
Λn+k

s +
[

∂f
∂Xn

]T
, for 1 ≤ n ≤ N ;

−
[

∂G0

∂X0

]T
Λ0

g =
N∑

n=1

[
∂Gn

∂X0

]T
Λn

g +
[

∂Rin

∂X0

]T
Λ0

+
1∑

k=1

[
∂Rk

∂X0 +
((

Ik
sQ

k−1
)
◦Ck

s + βC̄k
s

)
� ∂Rk

GCL

∂X0

]T
Λk

s +
[

∂f
∂X0

]T
, for n = 0.

(35)
Here, ∂f/∂Xn is a 1 × mx row vector, ∂Gn/∂Xn is an mx × mx matrix, ∂Vn

s /∂X
n, ∂Rn/∂Xm, and

∂Rn
GCL/∂X

m are ms ×mx matrices, ∂(AnQn)/∂Xn is an mf ×mx matrix, and ∂Rin/∂X0 is an mq ×mx

matrix. The operation � is an extension of the Hadamard multiplication to a product between an ms × 1
vector and an ms ×m matrix, where the second matrix dimension, m, is arbitrary. The operation indicates
that the vector multiplies the columns of the matrix in an element-by-element fashion resulting in a new
ms ×m matrix.

When considering the linearization of An, the domain-connectivity information is assumed to be fixed.
That is, the weighting coefficients represented by this matrix are considered functions of the mesh coordinates;
however, the interpolating elements are considered constant so that the hole-cutting and domain-connectivity
algorithms need not be linearized.

With Lagrangian multipliers satisfying equations Eqs. 34 and 35, the sensitivity derivatives are calculated
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as follows:

∂L
∂D = ∂f

∂D∆t+
N∑

n=1

[
Λn

g

]T ∂Gn

∂D ∆t+
N∑

n=1
[Λn

s ]T
[

∂Rn

∂D +
((

In
s Qn−1

)
◦Cn

s + βC̄n
s

)
� ∂Rn

GCL

∂D

]
∆t

+
([

Λ0
g

]T ∂G0

∂D +
[
Λ0
]T [∂Rin

∂D

])
∆t,

(36)

where ∂L/∂D and ∂f/∂D are 1×md row vectors, ∂Gn/∂D is an mx×md matrix, ∂Rn/∂D and ∂Rn
GCL/∂D

are ms ×md matrices, and ∂Rin/∂D is an mq ×md matrix.
To facilitate the solution of Eqs. 34 and 35, the values of Xn, ∂Xn/∂t, and Qn are stored to disk at the

conclusion of each physical time step of the flow solution using a strategy designed to minimize file system
overhead. The approach is based on a massively parallel paradigm in which each processor writes to its own
unformatted direct-access file at each time step. The data writes are buffered using an asynchronous paradigm
so that execution of floating point operations for the subsequent time step may proceed simultaneously. This
approach is described and evaluated in Ref. 3 and has been found to scale well to several thousand processors
using a parallel file system. Rather than recompute the domain-connectivity information during the adjoint
solution procedure, a similar I/O paradigm has been implemented to efficiently store this information to
disk, although the size of this data is typically an order of magnitude less than the flow-field data. During
the solution of Eqs. 34 and 35, data is loaded from disk using a similar paradigm but in reverse, such that
data required for the solution at time level n− 1 is pre-loaded during the computations for time level n.

VIII. Iterative Solution of Equations at Each Time Level

When solving the flow equations, the value of Qn−1 is taken to be an initial approximation for Qn. The
solution of Eqs. 14, 15, and 16 at time level n is obtained through the following iterations, which exploit the
form of the Jacobian matrix given by Eq. 17:

F : An
f ∆Qn,m

f = −
[
An

s Qn,m
s + An

f Qn,m
f + An

hQn,m
h

]
,

Qn,m+1
f = Qn,m

f + ∆Qn,m
f , (37)

S :
[

1
∆τ Diag(Vn

s ) + 1
∆tDiag(Cn

s ◦Vn
s ) + ∂R̂n,m

∂Qn
s

]
∆Qn,m

s =

−
[
Cn

s ◦
Qn,m

s −In
s Qn−1

∆t ◦Vn
s + Rn,m +

((
In
sQ

n−1
)
◦Cn

s + βC̄n
s

)
◦Rn

GCL

]
,

Qn,m+1
s = Qn,m

s + ∆Qn,m
s ,

(38)

H : Pn∆Qn,m
h = −

[
Pn

s Qn,m+1
s + Pn

f Qn,m+1
f + Pn

hQn,m
h

]
,

Qn,m+1
h = Qn,m

h + ∆Qn,m
h .

(39)

Here, the second superscript m is the iteration count, Rn,m is the spatial non-linear residual computed
for the most recent solution that involves Qn,m+1

f , ∆τ is a pseudo-time step, and ∂R̂n,m/∂Qn
s is the Jacobian

of a first-order spatial discretization.
At each iteration, Eq. 37 is solved exactly because An

f is a diagonal matrix, and the fringe solutions
are updated first. An approximate solution of the linear system of equations (Eq. 38) is obtained through
several iterations of a multicolor Gauss-Seidel point-iterative scheme, followed by a solution update for
Qn,m+1

s . Finally, Eq. 39 is relaxed and solutions at hole points are updated. The convergence rate of the
solution at hole points is typically the slowest; relaxation of the pseudo-Laplacian operator is known for poor
convergence behavior. If the solution at hole points is decoupled, then its value may be updated only once
after the solution at flow and fringe points has been converged.

The adjoint equations are solved backwards in time. The solution procedure outlined here is based on
the single-grid implementation which has been previously verified for turbulent flows on three-dimensional
unstructured grids undergoing general dynamic motions.5 The iterative solution of the adjoint equations
given by Eq. 34 at time level n is performed in precisely the reverse order as the iterations given by Eqs.
37-39:
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H : [Pn
h]T ∆Λn,m

h = −
[

∂f
∂Qn

h

]T
− In

h

[
In+1
s

]T [
Cn+1

s ◦
(
− 1

∆tV
n+1
s + Rn+1

GCL

)
◦Λn+1

s

]
− [Pn

h]T Λn,m
h −

[
∂Rn

∂Qn
h

]T
Λn,m

s − [An
h]T Λn,m

f ,

Λn,m+1
h = Λn,m

h + ∆Λn,m
h ,

(40)

S :
[

1
∆τ Diag(Vn

s ) + 1
∆tDiag(Cn

s ◦Vn
s ) + ∂R̂n,m

∂Qn
s

]
∆Λn,m

s =

−
[

∂f
∂Qn

s

]T
− In

s

[
In+1
s

]T [
Cn+1

s ◦
(
− 1

∆tV
n+1
s + Rn+1

GCL

)
◦Λn+1

s

]
− 1

∆tC
n
s ◦Vn

s ◦Λn,m
s −

[
∂Rn

∂Qn
s

]T
Λn,m

s − [An
s ]T Λn,m

f − [Pn
s ]T Λn,m+1

h

Λn,m+1
s = Λn,m

s + ∆Λn,m
s ,

(41)

F :
[
An

f

]T
∆Λn,m

f = −
[

∂f
∂Qn

f

]T
− In

f

[
In+1
s

]T [
Cn+1

s ◦
(
− 1

∆tV
n+1
s + Rn+1

GCL

)
◦Λn+1

s

]
−
[

∂Rn

∂Qn
f

]T
Λn,m+1

s −
[
An

f

]T
Λn,m

f +
[
Pn

f

]T
Λn,m+1

h ,

Λn,m+1
f = Λn,m

f + ∆Λn,m
f .

(42)

Solutions for the grid adjoint equations are obtained through relaxation of Eq. 35.

IX. Verification of Adjoint Implementation

To verify the accuracy of the implementation, comparisons are made with results generated through an
independent approach based on the use of complex variables. This approach was originally suggested in Refs.
12 and 57, and was first applied to a Navier-Stokes solver in Ref. 58. Using this formulation, an expression
for the derivative of a real-valued function f(x) may be found by expanding the function in a complex-valued
Taylor series, using an imaginary perturbation iε:

∂f

∂x
=
Im[f(x+ iε)]

ε
+O(ε2). (43)

The primary advantage of this method is that true second-order accuracy may be obtained by selecting
step sizes without concern for subtractive cancellation errors typically present in real-valued Frechet deriva-
tives. Through the use of an automated scripting procedure outlined in Ref. 59, this capability can be
immediately recovered at any time for the baseline flow solver. For computations using this method, the
imaginary step size has been chosen to be 10−50, which highlights the robustness of the complex-variable
approach. For each verification test, all equation sets are converged to machine precision for both the
complex-variable and adjoint approaches. Since the package described in Ref. 46 cannot directly accom-
modate complex-valued grids and solutions, the integer-valued donor and receptor information is instead
transferred to the solver, which performs the requisite complex-valued donor weight computations and solu-
tion interpolations. This procedure has been verified to produce identical real components as compared to
the routines internal to the package of Ref. 46.

The test case used to verify the accuracy of the implementation is based on the rotorcraft configuration
shown in Fig. 1. The conventional rotorcraft definition for the azimuth angle ψ is also shown in the figure.
The fuselage is described by a component mesh consisting of 88,001 nodes and 505,437 tetrahedral elements.
Each of the four rotor blades is modeled using a component grid containing 103,296 nodes and 601,459
tetrahedral elements. The entire configuration is combined with a background grid consisting of 50,156
nodes and 285,587 tetrahedral elements to yield a composite mesh system with 551,341 nodes and 3,196,860
tetrahedral elements.

A very general combination of forced motions is applied to the configuration as follows. The fuselage mesh
is subjected to a rigid fixed-rate rotational and translational motion in the starboard direction. The motion
of each rotor blade is treated as a child of the fuselage motion, and consists of an additional rigid fixed-rate
rotation in the azimuthal direction. Each blade is also subjected to a final child motion consisting of a forced
vertical flapping that is modeled as a 1◦ oscillatory rotation about the rotor hub with a two-per-revolution
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frequency, and is accommodated with the deforming mesh mechanics. The background mesh is held fixed
in inertial space. The overall motion of the configuration is shown in Fig. 2, while the vertical extent of
the blade tip motion due to flapping is shown in Fig. 3. In summary, the composite motion is a family of
four generations, occurring in the following ancestral order from oldest to youngest: inertial reference frame,
fuselage motion, azimuthal blade motion, and flapping blade motion.

For the verification of the compressible implementation, the free-stream Mach number is 0.1 and the
Reynolds number is 4.2 million based on the blade tip speed and chord, and fully turbulent flow is assumed.
A similarly scaled Reynolds number of 3.1 million is used for the incompressible verification. The angle
of attack is 2◦, and the advance ratio is 0.12. The physical time step corresponds to 1◦ of rotation in the
azimuthal direction. All of the computations are performed using 128 processors.

Sensitivity derivatives of the lift coefficient for the entire vehicle after five physical time steps are computed
using the discrete adjoint and complex-variable approaches. Although the coarse spatial resolution and brief
duration of the simulation are not sufficient to resolve the flow physics of the problem, they are adequate
to evaluate the discrete consistency of the implementation. Table 2 shows the compressible flow sensitivity
derivatives with respect to angle of attack, variables characterizing the rigid-body motions, and parameters
describing the blade and fuselage shape. Results are shown for all of the temporal BDF schemes discussed
in Section II and the appendix. Analogous results for the incompressible formulation are shown in Table 3.
The results from the discrete adjoint and complex-variable approaches are in very good agreement for all
cases; non-matching digits in the sensitivities are underlined.

X. Large-Scale Test Cases

To evaluate the proposed design methodology, aerodynamic optimizations are performed using three large-
scale test cases. The goal is solely to demonstrate the ability of the implementation to successfully reduce
each of the stated objective functions while satisfying any constraints present. While details pertaining to the
underlying flow physics clearly may be of interest in each case, investigations of that nature are considered
beyond the scope of the current effort and are not explored here.

For each case shown below, the spatial and temporal grid resolutions have been chosen based on a suitable
compromise between solution accuracy and computational efficiency. Each optimization is performed on an
SGI ICE system using dual-socket hex-core nodes with Intel Xeon X5670 cores in a fully-dense configuration.
A single additional node is allocated for serial execution of the dynamic hole-cutting library. The computa-
tional environment also includes a Lustre-based parallel file system,60 and computational statistics include
any disk I/O time required to read or write the complete flow-field solution.

As described above, the implementation supports very general motions including the use of deforming
bodies. However, physical models typically responsible for such effects — such as structural models —
generally are a strong function of the aerodynamics and require a formal coupling procedure. While the flow
solver used in the current study can accommodate such models, the adjoint formulation does not account
for such effects at this time. Therefore, to evaluate the current methodology, all large-scale simulations
described here rely on forced motions. Development of a more general adjoint formulation required for
coupling aerodynamics with other disciplinary models is relegated to future work.

X.A. NREL Phase VI Wind Turbine

The first test case is based on the NREL Phase VI wind turbine described in Ref. 61. The geometry is a
two-blade upwind configuration with a nacelle and tower. The grid system used here has been developed in
Ref. 43. The component grid for each blade consists of 4,510,177 nodes and 26,574,786 tetrahedral elements,
and a separate component grid containing the nacelle and tower geometries consists of 971,059 nodes and
5,716,227 tetrahedral elements. The background mesh consists of 4,776,082 nodes and 28,278,639 tetrahe-
dral elements. The resulting composite mesh system contains 14,767,495 nodes and 87,144,438 tetrahedral
elements. Views of the configuration and surface meshes are shown in Fig. 4.

The simulation is fully turbulent and is performed using the incompressible form of the governing equa-
tions. Standard sea-level conditions are used with a free-stream velocity of fifteen meters per second aligned
with the axis of rotation. The radius of the blades is 5.029 meters and the system rotates at a speed of
seventy-two RPM. The BDF2opt time integration scheme is used with 100 subiterations and a physical time
step corresponding to 1◦ of blade rotation. Solutions are run for 720 time steps or two complete revolutions
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of the blades. The torque profile for the baseline geometry is shown as the solid line in Fig. 5. After a series
of initial transients, the solution quickly settles into a quasi-steady state behavior. The mean value of the
torque coefficient C̄Q measured over the second revolution is 0.00130. An isosurface of the Q criterion62 is
included in Fig. 6.

The goal of the current test case is to maximize the torque acting on the turbine by altering the blade
geometry. The objective function is based on torque values ĈQ, which do not include the nondimensional-
ization using the reference geometry, and is posed as a discrete summation of the intermediate torque value
minus a constant target value over the second revolution:

fobj =
720∑

n=361

(Ĉn
Q − 2.0)2∆t. (44)

The target value of 2.0 has been chosen based on the initial ĈQ profile. The objective function could also
be formulated in terms of nondimensional torque values; in this case, the target value should be rescaled
accordingly. There are a total of 76 design variables as shown in Fig. 7. These include seven twist values
located at various stations along the span of the blade as well as twenty-one thickness and forty-eight camber
variables distributed across the blade planform. Thinning of the blade is not allowed.

The optimization is performed using 240 computational nodes or a total of 2,880 processing cores. In
this environment, individual flow-field and adjoint solutions require 6.5 and 6 hours of wall-clock time,
respectively. Approximately 950 gigabytes of disk space are required to store a complete flow-field solution
and its associated domain connectivity data. The package described in Ref. 63 is used to perform the
optimization.

The convergence history for the optimization is shown in Fig. 8. The objective function has been reduced
from its initial value of 69.4 to a final value of 58.7. The final profile for the torque coefficient is included as
the dashed line in Fig. 5. The mean value C̄Q measured over the second revolution is 0.00159, an increase
of 22% over the baseline value. Cross-sections of the baseline and final blade geometries are shown in Fig.
9. The optimization has increased the thickness across much of the span, while also increasing the negative
camber in the trailing edge region.

The optimization procedure for the current test case required nine flow solutions and eight adjoint
solutions, for a total of 307,000 CPU hours or 4.5 days of wall-clock time. Although not done for the
wind turbine demonstration, practical constraints such as root-bending moment or thrust constraints are
straightforward to incorporate as shown in Section X.C.

X.B. Biologically-Inspired Flapping Wing

The next test case is based on a simple wing configuration undergoing a complex kinematic motion inspired
by insects such as the Hawkmoth manduca sexta.64 Such concepts are receiving considerable attention in
applications to micro air vehicles.65 The geometry consists of a rectangular flat plate with semi-circular
leading and trailing edges and an aspect ratio of 3.33. The mesh system used for this example has been
generated using the approach outlined in Ref. 66. The component mesh containing the wing geometry
consists of 3,016,149 nodes and 17,642,078 tetrahedral elements. The background mesh containing the plane
of symmetry and outer boundaries consists of 5,339,195 nodes and 31,446,042 tetrahedral elements, yielding
a composite mesh with 8,355,344 nodes and 49,088,120 tetrahedral elements. A nearfield view of the wing
surface mesh is shown in Fig. 10.

The baseline wing is offset 1.33 chord lengths from the plane of symmetry and is assumed to be operating
in quiescent conditions. The imposed motion is achieved through the user-defined kinematics interface
described above. Here, time-varying angles describing rotations about the x-, y-, and z-axes are specified in
the following general form:

θx = Ax[cos(ω1xt)− 1] +Bx sin(ω2xt),
θy = Ay[cos(ω1yt)− 1] +By sin(ω2yt),
θz = Az[cos(ω1zt)− 1] +Bz sin(ω2zt),

(45)

where the amplitudes and frequencies are specified by the user. These angles are used to construct a series
of rotation matrices of the form given by Eq. 20. These matrices are then multiplied together to form the
final rotation matrix used to specify the current wing position.
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In the current example, the baseline motion is a superposition of two oscillatory rotations, each occurring
at 26 Hz. The first rotation is a sweeping motion that rotates the wing ±60◦ about its root chord line. The
second rotation is a feathering motion that rotates the wing ±45◦ about its leading edge. The net effect of
this composite motion is a thrust force in the direction from trailing edge to leading edge. Several snapshots
of the wing undergoing a period of the baseline motion are shown in Fig. 11.

The Reynolds number based on the wing chord and maximum tip speed is 1,280. The governing equations
are the incompressible laminar Navier-Stokes equations. The BDF2opt time integration scheme is used with
fifty subiterations and a physical time step corresponding to 250 steps per period of the baseline motion.
Each simulation is run for 1,250 time steps and is performed using 160 computational nodes or a total of
1,920 processing cores. Approximately 850 gigabytes of disk space are required to store a complete flow-field
solution and its associated domain connectivity data. Individual flow-field and adjoint solutions require
roughly four and three hours of wall-clock time, respectively. The baseline thrust profile exhibits a two-per-
cycle periodic behavior as shown by the solid line in Fig. 12. The mean value of the thrust coefficient CT

measured over the final period is 0.127.
The goal of the two test cases presented here is to maximize the thrust coefficient over the final 250 time

steps by optimizing the fifteen design parameters describing the kinematic motion of the wing, namely the
frequencies, amplitudes, and coordinates of the center of rotation for the composite motion described above.
Both of the optimizations have been performed using the package described in Ref. 67. The first test case
uses an objective function based on a target thrust distribution:

fobj =
1,250∑

n=1,001

(Cn
T − 5.0)2∆t. (46)

The second test case uses an objective function which aims to match a single target value for the time-
averaged value of thrust:

fobj =

[(
1

250

1,250∑
n=1,001

Cn
T

)
− 5.0

]2

∆t. (47)

In each case, the target value of 5.0 has been chosen based on the initial thrust profile shown in Fig.
12. Although not shown, physical constraints such as power constraints can also be incorporated in a
straightforward fashion.

The convergence history for the objective function based on a target distribution is shown by the square
symbols in Fig. 13. The value has been steadily reduced from 729 to 706 over ten design cycles. Inspection
of the final values of the design variables shown in Table 4 reveals moderate changes to all parameters.
The final thrust profile is included as the dashed line in Fig. 12. The optimization has not only increased
the magnitude of the peaks, but has also altered the frequency content such that three peaks now occur
within the interval used to define the objective function. The mean value of the thrust coefficient over the
final 250 time steps is 0.207, a 63% increase over the baseline value. For this test, the optimizer requested
twenty-two flow solutions and ten adjoint solutions, requiring approximately 227,000 CPU hours or five days
of wall-clock time.

The results based on the time-average objective function are included in Fig. 12 as the dash-dot line. As
in the previous case, the frequency of the signal has been altered to yield three peaks within the objective
function interval. The mean value of the thrust coefficient over the final 250 time steps has been increased to
0.265, a 109% increase over the baseline value. The objective function history is plotted in Fig. 13, where it
can be seen that the value has been reduced from 2.92 to 2.75 over eight design cycles. Here, the optimizer
requested twenty-five flow solutions and eight adjoint solutions, requiring 238,000 CPU hours or just over
five days of wall-clock time.

It should be noted that a series of shape optimizations were also attempted for the current test problem,
but are not presented here. A total of eighty-eight shape parameters describing the twist, shear, thickness,
and camber of the wing were used. In general, any shape modification yielding a thrust improvement over
one half of the period was seen to be equally detrimental to performance during the opposite half, as each
wing surface alternates between pressure and suction conditions. Other forms of shape modification such as
planform effects could prove beneficial, although such changes have not been explored here.
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X.C. UH-60A Blackhawk Helicopter

The final test case is based on the UH-60A Blackhawk helicopter configuration.68 Extensive analysis of
this configuration has previously been performed using the solver employed in the current study.39 The
composite grid system used here consists of four identical blade component grids and a single component
grid containing the fuselage and outer extent of the computational domain. Each of the blade grids consists
of 1,266,525 nodes and 7,476,818 tetrahedral elements, while the fuselage grid contains 4,196,841 nodes and
24,735,227 tetrahedral elements. This results in a composite grid system consisting of 9,262,941 nodes and
54,642,499 tetrahedral elements. The surface mesh for the configuration is shown in Fig. 14.

The governing equations are the compressible Reynolds-averaged Navier-Stokes equations. The simula-
tion is based on a forward flight condition with a blade tip Mach number equal to 0.6378 and a Reynolds
number of 7.3 million based on the blade tip chord. The advance ratio is 0.37 and the angle of attack is
0◦. The rotor blades are subjected to a time-dependent pitching motion that is modeled as a child of the
azimuthal rotation and is governed by a sinusoidal variation based on collective and cyclic control inputs:

θ = θc + θ1ccosψ + θ1ssinψ. (48)

Here, θ is the current blade pitch setting, ψ is the current azimuth position for the blade, θc represents the
collective control input, and θ1c and θ1s are the lateral and longitudinal cyclic control inputs, respectively.
All three control inputs are set to 0◦ at the baseline condition; i.e., the vehicle is initially untrimmed.

The BDF2opt time integration scheme is used with fifteen subiterations and a physical time step corre-
sponding to 1◦ of rotor rotation. The simulation is run for two rotor revolutions using 160 computational
nodes or a total of 1,920 processing cores. In this environment, a single execution of the flow and adjoint
solvers requires two and three hours of wall-clock time, respectively. Approximately 650 gigabytes of disk
space are required to store a complete flow-field solution and its associated domain connectivity data.

Figure 15 shows an isosurface of the Q criterion62 after two rotor revolutions. The vortices emanating
from each blade tip and other surfaces of the vehicle are clearly visible. Profiles of the baseline lift and lateral
and longitudinal moment cofficients are shown as the solid lines in Figs. 16-18. The values quickly establish
a four-per-revolution periodic behavior after 180◦ of blade rotation. The mean value of the lift coefficient
over the second rotor revolution is 0.023. The untrimmed flight condition is clearly evident in the nonzero
mean values for the two moment coefficients.

The objective for the current test case is to maximize the lift acting on the vehicle while satisfying explicit
constraints on the lateral and longitudinal moments such that the final result is a trimmed flight condition.
The design variables consist of 64 shape parameters describing the rotor blades, including an 8x4 matrix
of 32 thickness variables and 32 camber variables as shown in Fig. 19. While the camber is allowed to
increase or decrease, no thinning of the blade is allowed. In addition, Eq. 48 and its relationship to the blade
pitch transform matrix are also linearized, allowing the control variables θc, θ1c, and θ1s to also be used as
design variables. These control angles are allowed to vary as much as ±7◦. Note that parameters describing
geometric changes to the fuselage could also be applied; however, without guidance for practical constraints
on such changes, such variables are not used here.

The objective function to be minimized is based on the time-averaged value of the lift coefficient over the
second rotor revolution:

fobj =

[(
1

360

720∑
n=361

Cn
L

)
− 2.0

]2

∆t. (49)

The target value of 2.0 has been chosen based on the initial lift profile. The explicit constraints on the two
moment coefficients are also based on time-averaged values over the same interval:

g1 =
1

360

720∑
n=361

Cn
Mx

∆t (50)

g2 =
1

360

720∑
n=361

Cn
My

∆t. (51)

The constraints are considered satisfied if g1 = g2 = 0, within a feasibility tolerance of ±0.0001. The
optimization is performed using the package described in Ref. 63. Note that the treatment of the moment
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constraints requires two additional adjoint solutions to compute the associated gradient vectors. These
additional solutions are obtained simultaneously with the adjoint computation for the lift objective using
the procedure outlined in Ref. 24 to accommodate multiple right-hand side vectors in Eqs. 34-36.

X.C.1. Design Results

Figure 20 shows the convergence of the objective function and constraints after three design cycles. The
optimization procedure quickly locates a feasible region in the design space based on the two moment
constraints and the value of the objective function is successfully reduced. The final unsteady lift profile is
included as the dashed line in Fig. 16. The mean value has been substantially increased to a value of 0.103.
The final unsteady profiles for the lateral and longitudinal moment coefficients are included as the dashed
lines in Figs. 17 and 18, respectively. Each of the new profiles has the desired zero mean value, indicating
that the final design is trimmed for level flight within the requested tolerance.

Based on the spanwise blade stations noted in Fig. 19, cross-sections of the initial and final blade
geometries are shown in Fig. 21. The shape changes are confined to the aft sections of the outer portion
of the blade, where the camber has been increased. The final value of the collective input θc is 6.71◦, while
the final values for the cyclic inputs θ1c and θ1s are 2.58◦ and -7.00◦, respectively. The entire optimization
procedure requiring four flow solutions and four adjoint solutions took approximately 20 hours of wall-clock
time, or 38,400 CPU hours.

X.C.2. Interpretation of the Adjoint Solution

Typical qualitative features of unsteady adjoint solutions are shown in Fig. 22 for the objective function
given by Eq. 49. The figure depicts centerline contours of the adjoint solution for the energy equation at
time level n = 420. The contours represent the instantaneous sensitivity of the objective function to a source
term applied to the energy equation at each point in the domain. Similar to steady-flow objective functions
based on surface integrals,69–72 the time-averaged value of the lift is particularly sensitive to information
propagating along the stagnation streamline and impacting the nose of the fuselage. In addition, Fig. 22
highlights several features emanating from the rotor blades as they pass through the cutting plane. These
features are loosely analogous to unsteady flow phenomena such as vortex sheets and tip vortices commonly
seen in forward solutions for rotor flows as shown in Fig. 15. However, unlike the forward problem, the
features shown in the adjoint solution propagate in the upstream direction as the adjoint system is integrated
in reverse physical time, indicating the sensitivity of the objective function to disturbances upstream.

In design optimization, the adjoint solutions are combined with the linearizations of the residual operators
with respect to design variables to yield sensitivity derivatives. Alternatively, the adjoint solutions may be
combined with local residuals to provide rigorous error estimates or with (local estimates of) the truncation
errors to guide mesh adaptation. Although these applications are not the focus of the current work, adjoint-
based adaptation methodologies14 offer many compelling advantages over traditional feature-based mesh
adaptation techniques which fail to identify important regions such as those containing the upstream features
highlighted in Fig. 22.

XI. Summary and Future Work

A general verified methodology for adjoint-based design optimization of unsteady turbulent flows on dy-
namic overset unstructured mesh systems has been presented. The formulation is valid for compressible and
incompressible forms of the Reynolds-averaged Navier-Stokes equations. The implementation is amenable
to massively parallel computing environments and has been verified through the use of an independent tech-
nique based on a complex-variable formulation. Several large-scale optimizations have been demonstrated
for complex flowfields involving a wind turbine configuration, a flapping wing, and a realistic helicopter
geometry subject to trimming constraints. The objective functions have been successfully reduced in each
case and all constraints present have been satisfied.

Although the demonstrated methodology provides a practical approach to optimization of general un-
steady aerodynamic flows, a wide range of research topics remains to be explored. Locally optimal,73

reduced-order model,74 and checkpointing15 techniques offer the potential to greatly reduce storage require-
ments. Multi-fidelity optimization algorithms75 should be exploited where possible to reduce dependence
on high-fidelity simulations. Convergence acceleration techniques76 can clearly have a direct impact on
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computational cost. Simultaneous adjoint-based error estimation and mesh adaptation approaches14 are
very attractive in establishing rigorous gridding requirements and eliminating user interaction. Extension of
adjoint-based methods to multidisciplinary optimization beyond the scope of computational fluid dynamics
is essential for making significant impacts on the current paradigm for design of aerospace vehicles and other
areas of applications. Finally, advancements in the fields of computer science, software development, and
high-performance computing must continue to be leveraged to the greatest extent possible.
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Appendix: Adjoint Equations for Higher-Order BDF Schemes

Discrete conservation laws employing high order temporal BDF schemes as introduced in Eq. 6 are
defined as

Cn
s ◦
[
a

Qn
s−In

s Qn−1

∆t ◦Vn
s + c

In
s Qn−2−In

s Qn−1

∆t ◦ In
s Vn−2 + d

In
s Qn−3−In

s Qn−1

∆t ◦ In
s Vn−3

]
+Rn +

(
(In

s Qn−1) ◦Cn
s + βC̄n

s

)
◦Rn

GCL = 0.
(52)

Proceeding as before, the Lagrangian can be written as

L (D,Q,X,Λ,Λg) = f∆t+
N∑

n=1

[
Λn

g

]T
Gn∆t

+
N∑

n=1

{
[Cn

s ◦Λn
s ]T

[
a

Qn
s−In

s Qn−1

∆t ◦Vn
s + c

In
s Qn−2−In

s Qn−1

∆t ◦ (In
s Vn−2)

+d In
s Qn−3−In

s Qn−1

∆t ◦ (In
s Vn−3)

]
+ [Λn

s ]T
[
Rn +

(
(In

s Qn−1) ◦Cn
s + βC̄n

s

)
◦Rn

GCL

]
+
[
Λn

f

]T
[AnQn] + [Λn

h]T [PnQn]
}

∆t

+
(
f0 +

[
Λ0

g

]T
G0 +

[
Λ0
]T

Rin
)

∆t.

(53)

On time levels 1 and 2, the time derivatives are assumed to be discretized with the BDF1 and BDF2 schemes,
respectively. Taking into account the dependencies on data at time levels n−2 and n−3, the adjoint equations
are obtained as follows:
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S : a
∆tV

n
s ◦Cn

s ◦Λn
s +

[
∂Rn

∂Qn
s

]T
Λn

s + [An
s ]T Λn

f + [Pn
s ]T Λn

h =

−
[

∂f
∂Qn

s

]T
− In

s
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s

]T [(− a
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∆tI
n+1
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for 3 ≤ n ≤ N ;

(54)
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(55)
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The corresponding grid adjoint equations are obtained as follows. Assuming ΛN+1 = ΛN+2 = ΛN+3 = 0:
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s
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d
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s
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sQ
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s
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[
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, for n = 0.

(57)
The sensitivity derivative for the higher-order BDF schemes is evaluated using Eq. 36.
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Table 1. Coefficients for BDF schemes.

Scheme a b c d

BDF1 1 −1 0 0
BDF2 3/2 −2 1/2 0
BDF3 11/6 −3 3/2 −1/3

BDF2opt 1.66 −2.48 0.98 −0.16

Table 2. Values of the sensitivity derivative ∂CL5/∂D for different design variables and temporal discretizations for
compressible flow. The symbols A and C denote adjoint and complex-variable results, respectively. Discrepancies are
shown in bold and underlined.

Variable BDF1 BDF2 BDF2opt BDF3

Angle of A: 0.116458961683733 A: 0.102099965021956 A: 0.102915752531413 A: 0.103785048456802

Attack C: 0.116458961683734 C: 0.102099965021956 C: 0.102915752531413 C: 0.103785048456802

Rot Rate A: 0.619149219921508 A: 0.609270815829788 A: 0.592456231940897 A: 0.575091540944799

Blade 1 C: 0.619149219933539 C: 0.609270815842755 C: 0.592456231953869 C: 0.575091540957581

Shape A: 0.056440771725301 A: 0.064382783171893 A: 0.062734653842921 A: 0.060943525618014

Blade 2 C: 0.056440771725196 C: 0.064382783171802 C: 0.062734653842842 C: 0.060943525617920

Flap Freq A: -0.414712919056299 A: -0.337250987004676 A: -0.344555513267488 A: -0.352419586848976

Blade 3 C: -0.414712919056270 C: -0.337250987004642 C: -0.344555513267474 C: -0.352419586848961

Rot Rate A: 6.86680217888885 A: 7.42798143738984 A: 7.31688305983601 A: 7.20812218587293

Fuselage C: 6.86680217888239 C: 7.42798143738254 C: 7.31688305982953 C: 7.20812218586623

Trans Rate A: 0.420300051382122 A: 0.400837175635065 A: 0.390973864106570 A: 0.379952931745697

Fuselage C: 0.420300051369376 C: 0.400837175622066 C: 0.390973864093789 C: 0.379952931733500

Shape A: -0.007809447236753 A: -0.009590444345683 A: -0.009613538492229 A: -0.009705401931920

Fuselage C: -0.007809447236691 C: -0.009590444345727 C: -0.009613538492351 C: -0.009705401931704
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Table 3. Values of the sensitivity derivative ∂CL5/∂D for different design variables and temporal discretizations for
incompressible flow. The symbols A and C denote adjoint and complex-variable results, respectively. Discrepancies are
shown in bold and underlined.

Variable BDF1 BDF2 BDF2opt BDF3

Angle of A: 0.000195945789030 A: 0.000234143173131 A: 0.000218182269639 A: 0.000191641169710

Attack C: 0.000195945789030 C: 0.000234143173131 C: 0.000218182269639 C: 0.000191641169711

Rot Rate A: 0.009518073976865 A: 0.010325090376673 A: 0.010544987182945 A: 0.010757597020150

Blade 1 C: 0.009518073976838 C: 0.010325090376647 C: 0.010544987182921 C: 0.010757597020128

Shape A: 0.000535025241509 A: 0.000607314158464 A: 0.000618811948355 A: 0.000633736751875

Blade 2 C: 0.000535025241508 C: 0.000607314158463 C: 0.000618811948355 C: 0.000633736751875

Flap Freq A: -0.004866399384562 A: -0.004825188859067 A: -0.004821787992149 A: -0.004810632891273

Blade 3 C: -0.004866399384562 C: -0.004825188859067 C: -0.004821787992149 C: -0.004810632891273

Rot Rate A: 0.042649260159755 A: 0.044962632318017 A: 0.044947751807594 A: 0.044876653248215

Fuselage C: 0.042649260159807 C: 0.044962632318090 C: 0.044947751807680 C: 0.044876653248312

Trans Rate A: 0.010034159304733 A: 0.010404514410124 A: 0.010284602229241 A: 0.010043806857134

Fuselage C: 0.010034159304771 C: 0.010404514410192 C: 0.010284602229293 C: 0.010043806857193

Shape A: 0.000087061995334 A: 0.000079589134812 A: 0.000082271937020 A: 0.000086753178814

Fuselage C: 0.000087061995336 C: 0.000079589134815 C: 0.000082271937019 C: 0.000086753178823

Table 4. Values of the initial and final design variables for the flapping wing configuration. The abbreviation COR
denotes the center of rotation.

Variable Baseline Distribution Target Function Time-Average Target Function

x-COR 0.000 0.025c 0.027c
y-COR 0.000 -0.119c -0.114c
z-COR 0.000 0.011c 0.012c
Ax 0.00 0.77 -0.11
Bx 45.00 45.13 45.25
ω1x 163.36 163.45 163.36
ω2x 163.36 177.47 192.77
Ay 0.000 0.30 -0.99
By 0.000 -1.50 -0.26
ω1y 163.36 162.76 163.15
ω2y 163.36 163.10 162.97
Az -60.00 -62.71 -62.83
Bz 0.00 0.69 -1.55
ω1z 163.36 173.59 189.57
ω2z 163.36 164.41 163.55
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Figure 1. Nearfield view of geometry and composite grid system used for linearization accuracy study.

Figure 2. Imposed motion for linearization accuracy study. Geometry shown every 720 deg of rotor azimuth.

Figure 3. Cross-sections of deforming blade mesh showing maximum vertical displacements at blade tip during lin-
earization accuracy study.
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Figure 4. Wind turbine configuration and nearfield view of surface mesh in hub region.
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Figure 5. Baseline and final torque profiles for wind turbine configuration.
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Figure 6. Front and side views of an isosurface of the Q criterion for the baseline wind turbine configuration.

Figure 7. Blade planform geometry, shape variable locations, and spanwise stations for wind turbine configuration.
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Figure 8. Convergence of objective function for wind turbine case.

Station 1

Station 3

Baseline
Design

Station 4

Station 5

Station 6

Station 2

Figure 9. Baseline and final blade section geometries for the wind turbine configuration. Vertical scale has been
exaggerated for clarity.
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Figure 10. Surface mesh for flapping wing case.

(a) First half of period. (b) Second half of period.

Figure 11. Snapshots of baseline flapping wing motion.
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Figure 12. Baseline and final thrust profiles for flapping wing case.
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Figure 13. Convergence of objective functions for flapping wing case.
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Figure 14. Surface mesh for UH-60 configuration.

Figure 15. Isosurface of the Q criterion for the baseline UH-60 configuration.
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Figure 16. Baseline and final lift coefficient profiles for the UH-60 configuration.
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Figure 17. Baseline and final CMx profiles for the UH-60 configuration.
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Figure 18. Baseline and final CMy profiles for the UH-60 configuration.

Figure 19. Blade planform geometry, shape variable locations, and spanwise stations for UH-60 configuration.
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Figure 20. Convergence of the objective function and constraints for the UH-60 configuration.
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Figure 21. Baseline and final blade section geometries for the UH-60 configuration. Vertical scale has been exaggerated
for clarity.
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Figure 22. Snapshot of the adjoint solution for the energy equation using an objective function based on a time-averaged
lift coefficient. Highlighted features originate on blade surfaces and propagate upstream.
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